direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C42.29C22, C42.237D4, C42.363C23, C4⋊C4.86C23, C8⋊C4⋊63C22, (C2×C8).452C23, (C2×C4).331C24, (C22×C4).457D4, C23.874(C2×D4), D4⋊C4⋊94C22, C4.22(C4.4D4), (C2×D4).100C23, C42.C2⋊34C22, C4⋊1D4.145C22, (C2×C42).844C22, (C22×C8).458C22, C22.591(C22×D4), C22.124(C8⋊C22), (C22×C4).1553C23, C22.84(C4.4D4), (C22×D4).367C22, (C2×C8⋊C4)⋊38C2, C4.40(C2×C4○D4), (C2×C4).511(C2×D4), C2.38(C2×C8⋊C22), (C2×D4⋊C4)⋊56C2, (C2×C4⋊1D4).23C2, (C2×C42.C2)⋊34C2, C2.42(C2×C4.4D4), (C2×C4).710(C4○D4), (C2×C4⋊C4).622C22, SmallGroup(128,1865)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C42.29C22
G = < a,b,c,d,e | a2=b4=c4=d2=1, e2=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1, ebe-1=bc2, dcd=c-1, ce=ec, ede-1=b2c-1d >
Subgroups: 580 in 244 conjugacy classes, 100 normal (12 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C8⋊C4, D4⋊C4, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C42.C2, C4⋊1D4, C4⋊1D4, C22×C8, C22×D4, C22×D4, C2×C8⋊C4, C2×D4⋊C4, C42.29C22, C2×C42.C2, C2×C4⋊1D4, C2×C42.29C22
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4.4D4, C8⋊C22, C22×D4, C2×C4○D4, C42.29C22, C2×C4.4D4, C2×C8⋊C22, C2×C42.29C22
(1 53)(2 54)(3 55)(4 56)(5 49)(6 50)(7 51)(8 52)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)
(1 60 21 27)(2 57 22 32)(3 62 23 29)(4 59 24 26)(5 64 17 31)(6 61 18 28)(7 58 19 25)(8 63 20 30)(9 40 46 56)(10 37 47 53)(11 34 48 50)(12 39 41 55)(13 36 42 52)(14 33 43 49)(15 38 44 54)(16 35 45 51)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(2 24)(3 7)(4 22)(6 20)(8 18)(9 15)(10 47)(11 13)(12 45)(14 43)(16 41)(19 23)(25 62)(26 32)(27 60)(28 30)(29 58)(31 64)(34 52)(35 39)(36 50)(38 56)(40 54)(42 48)(44 46)(51 55)(57 59)(61 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,60,21,27)(2,57,22,32)(3,62,23,29)(4,59,24,26)(5,64,17,31)(6,61,18,28)(7,58,19,25)(8,63,20,30)(9,40,46,56)(10,37,47,53)(11,34,48,50)(12,39,41,55)(13,36,42,52)(14,33,43,49)(15,38,44,54)(16,35,45,51), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (2,24)(3,7)(4,22)(6,20)(8,18)(9,15)(10,47)(11,13)(12,45)(14,43)(16,41)(19,23)(25,62)(26,32)(27,60)(28,30)(29,58)(31,64)(34,52)(35,39)(36,50)(38,56)(40,54)(42,48)(44,46)(51,55)(57,59)(61,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,53)(2,54)(3,55)(4,56)(5,49)(6,50)(7,51)(8,52)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44), (1,60,21,27)(2,57,22,32)(3,62,23,29)(4,59,24,26)(5,64,17,31)(6,61,18,28)(7,58,19,25)(8,63,20,30)(9,40,46,56)(10,37,47,53)(11,34,48,50)(12,39,41,55)(13,36,42,52)(14,33,43,49)(15,38,44,54)(16,35,45,51), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (2,24)(3,7)(4,22)(6,20)(8,18)(9,15)(10,47)(11,13)(12,45)(14,43)(16,41)(19,23)(25,62)(26,32)(27,60)(28,30)(29,58)(31,64)(34,52)(35,39)(36,50)(38,56)(40,54)(42,48)(44,46)(51,55)(57,59)(61,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,53),(2,54),(3,55),(4,56),(5,49),(6,50),(7,51),(8,52),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44)], [(1,60,21,27),(2,57,22,32),(3,62,23,29),(4,59,24,26),(5,64,17,31),(6,61,18,28),(7,58,19,25),(8,63,20,30),(9,40,46,56),(10,37,47,53),(11,34,48,50),(12,39,41,55),(13,36,42,52),(14,33,43,49),(15,38,44,54),(16,35,45,51)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(2,24),(3,7),(4,22),(6,20),(8,18),(9,15),(10,47),(11,13),(12,45),(14,43),(16,41),(19,23),(25,62),(26,32),(27,60),(28,30),(29,58),(31,64),(34,52),(35,39),(36,50),(38,56),(40,54),(42,48),(44,46),(51,55),(57,59),(61,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C8⋊C22 |
kernel | C2×C42.29C22 | C2×C8⋊C4 | C2×D4⋊C4 | C42.29C22 | C2×C42.C2 | C2×C4⋊1D4 | C42 | C22×C4 | C2×C4 | C22 |
# reps | 1 | 1 | 4 | 8 | 1 | 1 | 2 | 2 | 8 | 4 |
Matrix representation of C2×C42.29C22 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 12 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 13 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,4,0,0,0,0,0,0,8,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,5,0,0,0,0,0,0,12,12,0,0,0,0,12,12,0,0,0,0,0,0,5,12,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[1,4,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[4,16,0,0,0,0,0,0,15,13,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0] >;
C2×C42.29C22 in GAP, Magma, Sage, TeX
C_2\times C_4^2._{29}C_2^2
% in TeX
G:=Group("C2xC4^2.29C2^2");
// GroupNames label
G:=SmallGroup(128,1865);
// by ID
G=gap.SmallGroup(128,1865);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,680,758,723,100,2804,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^2=1,e^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1,e*b*e^-1=b*c^2,d*c*d=c^-1,c*e=e*c,e*d*e^-1=b^2*c^-1*d>;
// generators/relations